• The allure of quantum computers (QC) is their ability to take advantage of quantum physics to solve problems too complex for computers that use classical physics.
  • Quantum physics describes reality at the subatomic scale, where the objects are particles like electrons. In this realm, you can’t pinpoint the location of an electron. You can only know that it will be present in a given volume of space, with a probability attached to each point in the volume.
  • Researchers have figured out the basics and used QCs to model the binding energy of hydrogen bonds and simulate a wormhole model. But to solve most practical problems, like finding the shape of an undiscovered drug, autonomously exploring space or factoring large numbers, they face some fractious challenges.