Decoding protein that repairs damaged DNA

IIT-H research was funded by the Science and Engineering Research Board

December 27, 2019 12:26 am | Updated 10:17 am IST - Hyderabad

The IIT Hyderabad research team.

The IIT Hyderabad research team.

The Indian Institute of Technology - Hyderabad (IIT-H) researchers have unravelled the working of a protein that repairs damaged DNA.

Nature has evolved techniques to not only protect DNA, but also repair damaged DNA so that a catastrophic damage can be averted.

In humans, one such repair mechanism involves activation of a special class of proteins called “DNA repair proteins”.

With increasing awareness of the impact of DNA damage on almost all diseases and maladies, there is a worldwide effort to understand how these repair proteins work, both as an academic exercise and as the foundation for therapeutic interventions.

The research team was headed by associate professor, department of biotechnology, Anindya Roy. The research was funded by Science and Engineering Research Board, department of science and technology, Government of India.

The results of the study, conducted in collaboration with professor of the department of biosciences and bioengineering of IIT- Guwahati, Arun Goyal, has been published recently in the journal Nucleic Acid Research. The paper has been co-authored by Dr. Anindya Roy, Dr. Arun Goyal and research scholars namely Monisha Mohan, Deepa Akula and Arun Dhillon.

What makes matter a living being, be it a bacterium or man, is a DNA. DNA is the blueprint of life form and encodes directions that the life form must take in order to become a bacterium, rose, lion or man.

It is thus essential for the survival of every cell and is usually kept well-protected within the nucleus of cells, and in some non-nuclear parts like the mitochondria.

Any damage to DNA can result in outcomes that can range from mild changes that cannot be perceived like a sudden appearance of a harmless mole to catastrophic diseases like cancer. The retention of DNA integrity is therefore essential for proper function and survival of all organisms.

Protection of DNA is daunting because of the possibility of damage by external sources and the intrinsic instability of DNA itself.

“Our laboratory at IIT-Hyderabad seeks to understand the working of DNA damage repair proteins. Certain types of chemicals produced naturally in the body can cause damages in DNA and, if not fixed fast, may trigger cell death”, Dr. Anindya Roy said.

Ms. Monisha Mohan discovered the mechanism by which these DNA repair proteins assemble when DNA is under threat. They studied the action of one specific protein called alkB homolog 3, or ALKBH3. It is known that ALKBH3 repairs alkylated DNA containing 1-methyladenosine and 3-methylcytosine through oxidative demethylation, but the mechanism has hitherto remained unclear.

Dr. Anindya Roy and the research team have unravelled the mechanism by which ALKBH3 brings about demethylation.

“We have found that ALKBH3 has a direct protein-protein interaction with another protein called RAD51C and this interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3′- tailed DNA”, adds Dr. Anindya Roy on the technical aspects of their discovery.

The team is fascinated by the universality of the mechanism – it is just as applicable to the bacterium as it is to human beings.

“The knowledge gained from our studies might, in the long term, be beneficial from a cancer therapeutic perspective”, hopes Dr. Anindya Roy, as his team proceeds with work on understanding how DNA repair works.

0 / 0
Sign in to unlock member-only benefits!
  • Access 10 free stories every month
  • Save stories to read later
  • Access to comment on every story
  • Sign-up/manage your newsletter subscriptions with a single click
  • Get notified by email for early access to discounts & offers on our products
Sign in

Comments

Comments have to be in English, and in full sentences. They cannot be abusive or personal. Please abide by our community guidelines for posting your comments.

We have migrated to a new commenting platform. If you are already a registered user of The Hindu and logged in, you may continue to engage with our articles. If you do not have an account please register and login to post comments. Users can access their older comments by logging into their accounts on Vuukle.