Now, a 'real worm' in virtual avatar

The nervous system of a worm was converted into computer code and uploaded

February 07, 2018 05:38 pm | Updated 05:50 pm IST

 The neural circuits in the computer move just like how a worm moves away when touched.

The neural circuits in the computer move just like how a worm moves away when touched.

In a first, scientists have ‘uploaded’ the neural sytem of a worm into a computer, allowing it to live in a virtual avatar and even learn new tricks without human coding.

The nematode C elegans is about one millimetre in length and is a very simple organism, researchers said. It is the only living being whose neural system has been analysed completely. It can be drawn as a circuit diagram or reproduced by computer software, so that the neural activity of the worm is simulated by a computer programme.

Such an artificial C elegans has now been trained by researchers at TU Wien in Austria to perform a trick— balancing a pole at the tip of its tail. Though C elegans has only 300 neurons, they are enough to make sure that the worm can find its way, eat bacteria and react to certain external stimuli.

It can, for example, react to a touch on its body. A reflexive response is triggered and the worm squirms away. When this simple reflex-network is recreated on a computer, the simulated worm reacts in exactly the same way to a virtual stimulation— not because anybody programmed it to do so, but because this kind of behaviour is hard-wired in its neural network.

Pole balancing trick

The researchers gave the virtual worm a typical control problem — a pole fixed on its lower end on a moving object, is supposed to stay in a vertical position. Whenever it starts tilting, the lower end has to move slightly to keep the pole from tipping over. Much like the worm has to change its direction whenever it is stimulated by a touch, the pole must be moved whenever it tilts. Researchers wanted to find out, whether the neural system of C elegans , uploaded to a computer, could solve this problem.

“With the help of reinforcement learning, a method also known as ‘learning based on experiment and reward’, the artificial reflex network was trained and optimized on the computer,” said Mathias Lechner from TU Wien. “The result is a controller, which can solve a standard technology problem - stabilizing a pole, balanced on its tip.

But no human being has written even one line of code for this controller, it just emerged by training a biological nerve system,” said Radu Grosu, from TU Wien. The team is going to explore the capabilities of such control-circuits further.

0 / 0
Sign in to unlock member-only benefits!
  • Access 10 free stories every month
  • Save stories to read later
  • Access to comment on every story
  • Sign-up/manage your newsletter subscriptions with a single click
  • Get notified by email for early access to discounts & offers on our products
Sign in

Comments

Comments have to be in English, and in full sentences. They cannot be abusive or personal. Please abide by our community guidelines for posting your comments.

We have migrated to a new commenting platform. If you are already a registered user of The Hindu and logged in, you may continue to engage with our articles. If you do not have an account please register and login to post comments. Users can access their older comments by logging into their accounts on Vuukle.