All about COVID-19

A step closer to developing a potent drug against novel coronavirus

Home strike: A team of researchers has deciphered the crystal structure of the main protease of the virus.

Home strike: A team of researchers has deciphered the crystal structure of the main protease of the virus.   | Photo Credit: AP

The presence of the inhibitor in the lungs even after 24 hours is significant because the virus affects the lungs

Designing better antivirals that would prevent the novel coronavirus (SARS-CoV-2) from infecting human cells may now become possible thanks to a team of researchers producing the crystal structure of the main protease of the virus. Main virus protease is an enzyme that processes proteins critical to virus development. An antiviral that blocks this enzyme, as in the case of drugs used against HIV virus, effectively prevents the virus from replicating. Hence, such an inhibitor will be effective against the novel coronavirus. The results of the study were published in the journal Science.

Deciphering key enzyme

A team led by Rolf Hilgenfeld from the University of Lubeck, Germany developed the crystal structure of main protease of the virus at 1.75 angstrom resolution. And by redesigning an existing inhibitor developed for other coronaviruses, the researchers have been able to develop a potent inhibitor that can effectively block the enzyme and neutralise the novel coronavirus. “Based on the structure, we developed the lead compound into a potent inhibitor of the SARS-CoV-2,” they write.

Main virus protease is one of the best characterised drug targets among coronaviruses. The inhibitor against the main protease targets a specific region of the enzyme. And any antiviral that targets this region of the enzyme will be specific to the virus and will not be toxic to human cells.

The researchers had earlier designed broad-spectrum inhibitors of the main proteases of other coronaviruses. One of the inhibitors showed good antiviral activity against other coronaviruses. Now, the team chose that inhibitor and modified it to increase the amount of time the drug is present in the body and to improve its solubility in plasma.

After the modification, the half-life of the inhibitor (compound 13a) increased three-fold, and the solubility improved by a factor of about 19. And to enhance the antiviral activity, the researchers further modified the inhibitor (compound 13b).

The researchers found that the IC50 (concentration of the compound to produce 50% inhibition) to inhibit the novel coronavirus is 0.90 microMolar. The inhibitor showed good potency to block the replication of the virus at half maximal effective concentration of 1.75 micromolar. In human cells infected with the novel coronavirus, a higher half maximal effective concentration of the inhibitor was required.

Effective inhibitor

The metabolic stability of the 13a inhibitor originally modified was found to be “good” in both mouse and human microsomes (a fragment of endoplasmic reticulum and attached ribosomes). Even at the end of 30 minutes, around 80% of the residual compound in mouse and 60% in human cells remained metabolically stable. When the inhibitor was administered subcutaneously into mice, the inhibitor was present in the plasma for as long as four hours but was excreted via urine for up to a day.

The half-life of the compound 13b was found to be 1.8 hours. But most importantly, even after 24 hours there was some amount (33 nanogram per gram) of the compound 13b in the lung tissue. The presence of the inhibitor in the lungs even at the end of a day is particularly signifiicant as the virus affects the lungs.

No adverse effects

The team tested for any adverse effects when mice inhaled the inhibitor 13b. “Inhalation was tolerated well and mice did not show any adverse effects, suggesting that this way, direct administration of the compound to the lungs would be possible,” they write.

Given the “favourable results” the study provides a “useful framework for development” of drugs to combat the novel coronavirus, the authors claim in the paper.

Why you should pay for quality journalism - Click to know more

This article is closed for comments.
Please Email the Editor

Printable version | Mar 28, 2020 6:14:20 PM | https://www.thehindu.com/sci-tech/science/a-step-closer-to-developing-a-potent-drug-against-novel-coronavirus/article31129220.ece

In This Package
Coronavirus | Why are only a fraction of cases tested?
Coronavirus | Vaccine was rapidly synthesised as novel coronavirus sequence was available, says virologist Gagandeep Kang
You are reading
A step closer to developing a potent drug against novel coronavirus
Coronavirus | The importance of ‘contact tracing’
Coronavirus | Are diabetics more prone to COVID-19?
Private firms ready to test for COVID-19
Coronavirus | How does soap use help in tackling COVID-19?
Fight for the finite: On budgetary allocation for health
Coronavirus | A problematic testing strategy
Fighting COVID-19 together for a shared future
Scientists get ready to test rival COVID-19 pandemic vaccines in animals
Coronavirus | The cost of opacity
Watch | COVID-19: Masks and sanitisers are now essential commodities
A COVID-19 control plan made simple
Watch | Your COVID-19 queries answered
Coronavirus | How is India containing COVID-19?
Battle against COVID-19
Watch | COVID-19: Dos and don'ts from the Health Ministry
A COVID-19 response that is quick off the blocks
Watch | Why is COVID-19 not a pandemic yet?
Watch | Coronavirus: Can masks protect you?
Watch | How is India dealing with coronavirus?
WHO’s unexplained hesitancy
Watch | Bats and the novel coronavirus
Coronavirus | India shares two SARS-CoV-2 genome sequences
COVID-19 | We are in uncharted territory, says WHO
Explained | Why is COVID-19 not a pandemic yet?
New COVID-19 epidemic at ‘decisive point’: WHO chief
COVID-19 vaccine may be ready by 2022: SII
Explainer: How WHO names a new disease
WHO names deadly viral disease from China as 'COVID-19'
Explained | When can people transmit the novel coronavirus?
Analysis | For China’s Xi, the coronavirus challenge comes laden with economic costs and political risks
How bats harbour several viruses yet not get sick
Extended chain of human-to-human spread seen in Germany
WHO declares coronavirus outbreak a global emergency
Watch | What is Coronavirus?
What is the source of the new SARS-like disease reported in China?
Data | The wide, rapid spread of the novel coronavirus
Alarming spread: on novel coronavirus outbreak
Gaps in our knowledge of coronavirus origin need fulfilment: Study
A new virus emerges in China
Next Story