Forget light bulbs: In future, your walls and ceiling will glow

December 13, 2010 09:01 am | Updated November 28, 2021 09:42 pm IST - Berlin

Forget light bulbs. In the future, organic light-emitting diodes will cause portions of your walls, ceilings or anything else desired to give you all the illumination you need, where you need it, according to a team of German researchers. File Photo

Forget light bulbs. In the future, organic light-emitting diodes will cause portions of your walls, ceilings or anything else desired to give you all the illumination you need, where you need it, according to a team of German researchers. File Photo

Forget light bulbs. In the future, organic light-emitting diodes will cause portions of your walls, ceilings or anything else desired to give you all the illumination you need, where you need it, according to a team of German researchers.

As in “Star Trek,” a simple voice command or a short push on the light switch -- and the whole ceiling lights up in a uniform and pleasant colour.

The technology behind this marvel is based on organic light-emitting diodes, or OLEDs for short. These diodes use special molecules to emit light as soon as current passes through them.

The first OLEDs have only recently become available, and they are small and expensive. A flat disk with a diameter of eight centimetres costs nearly 300 dollars.

But researchers at the Fraunhofer Institute for Laser Technology ILT in Aachen are working together with Philips to develop a process for making these lamps distinctly bigger and cheaper -- and thus suitable for the mass market.

These new lamps are expensive primarily due to the costly manufacturing process. An OLED consists of a sandwich layer structure: a flat electrode at the bottom, several intermediate layers on top, as well as the actual luminescent layer, consisting of organic molecules.

The final layer is a second electrode made of a special material called ITO (indium tin oxide). Together with the lower electrode, the ITO layer has the job of supplying the OLED molecules with current and causing them to light up.

The problem is, however, that the ITO electrode is not conductive enough to distribute the current uniformly across a larger surface.

The consequence: Instead of a homogeneous fluorescent pattern, the brightness visibly decreases in the centre of the “illuminated ceiling.” “In order to compensate, additional conductor paths are attached to the ITO layer,” says Christian Vedder, project manager at the Fraunhofer Institute for Laser Technology. “These conductor paths consist of metal and distribute the current uniformly across the surface so that the lamp is lit homogeneously.” Normally the conductor paths are applied by energy-intensive evaporation and structuring processes, while only a maximum of 10 per cent of the luminous area may be covered by conductor paths.

“The large remainder, including the chemical etchant, has to be recycled in a complicated process,” explains Vedder.

This is different in the new process by the researchers from the Fraunhofer Institute for Laser Technology. Instead of depositing a lot of material by evaporation and removing most of it again, the scientists only apply precisely the amount of metal required.

First of all, they lay a mask on the surface of the ITO electrode.

The mask has micrometre slits where later the conductive paths are supposed to be.

On this mask, the researchers deposit a thin film of metal made of aluminum, copper or silver -- the metal out of which the conductor path is supposed to be made. Subsequently, a laser passes over the conductor path pattern at a speed of several metres per second.

The metal melts and evaporates while the vapor pressure makes sure that the melted drops are pressed through the fine slits in the masks on to the ITO electrode. The results are extremely fine conductor paths. At up to 40 micrometres, they are distinctly narrower than the 100-micrometre conductor paths which can be produced with conventional technology.

“We have already been able to demonstrate that our method works in the laboratory,” says Vedder. “The next step is implementing this method in industrial practice together with our partner Philips and developing a plant technology for inexpensively applying the conductor paths on a large scale.” The new laser process could be ready for practical application in two to three years.

0 / 0
Sign in to unlock member-only benefits!
  • Access 10 free stories every month
  • Save stories to read later
  • Access to comment on every story
  • Sign-up/manage your newsletter subscriptions with a single click
  • Get notified by email for early access to discounts & offers on our products
Sign in

Comments

Comments have to be in English, and in full sentences. They cannot be abusive or personal. Please abide by our community guidelines for posting your comments.

We have migrated to a new commenting platform. If you are already a registered user of The Hindu and logged in, you may continue to engage with our articles. If you do not have an account please register and login to post comments. Users can access their older comments by logging into their accounts on Vuukle.