Every single atom in the universe carries an unimaginably powerful battery within its heart, called the nucleus. This form of energy, often called Type-1 fuel, is hundreds of thousands, if not millions, of times more powerful than the conventional Type-0 fuels, which are basically dead plants and animals existing in the form of coal, petroleum, natural gas and other forms of fossil fuel. To put things in perspective, imagine a kilometre-long train, with about 50 freight bogies, all fully laden with the most typical fossil fuel — about 10,000 tonnes of coal. The same amount of energy can be generated by 500 kg of Type-1 fuel, naturally occurring Uranium, enough to barely fill the boot of a small car. When the technology is fully realised, one can do even better with naturally occurring Thorium, in which case the material required would be much less, about 62.5 kg, or even less according to some estimates, and thus enough to fit in a small bag (Note: 500 kg of naturally occurring Uranium would contain about 3.5 kg of Uranium-235 fuel.)

Energy and economy

Energy is the most fundamental requirement of every society or nation as it progresses through the ladder of development. Of course, once it reaches a relative degree of development, the energy demand becomes more stable. There is a distinct and categorical correlation between the energy consumption and income of a nation — each reinforcing the other. Look around you: every step into progress comes with an addition of demand for energy — cars, ships and aircraft to move, hospitals to give quality healthcare, education, as it follows the model of e-connectivity, production of more and better goods, irrigation for better farming. In fact, every element of our lives is increasingly going to become energy-intensive — that is a necessary prerequisite for development. This is clearly reflected in the average energy consumption per person across nations — for instance, an average American consumes more than 15 times the energy consumed by an average Indian (see Figure 1)

Today, India finds itself going through a phase of rapid ascent in economic empowerment. Industries are evolving at a significantly higher rate since liberalisation. Our focus for this decade will be on the development of key infrastructure and the uplifting of the 600,000 villages where 750 million people live, as vibrant engines of the economy. In 2008, we crossed the trillion-dollar mark, and it took more than six decades for us to reach that milestone. However, it is predicted that the Indian economy will double again, to reach the $2-trillion mark by 2016, and then again redouble, to reach the $4 trillion milestone by 2025. All this economic growth will need massive energy. It is predicted that the total electricity demand will grow from the current 150,000 MW to at least over 950,000 MW by the year 2030 — which will still be less than one-fourth of the current U.S. per capita energy need. In fact, by 2050, in all likelihood the demand could go even higher, and the per capita energy demand would be equal to the current French or Russian figure of about 6000 W per capita.

Analysing the international scenario on nuclear energy

So, will we allow an accident in Japan, in a 40-year-old reactor at Fukushima, arising out of extreme natural stresses, to derail our dreams to be an economically developed nation? When a few European countries, particularly Germany, decide to phase out nuclear power, that should not become a blanket argument to take a view against our nuclear programme.

A few things need to be put in context here. The decision of Germany suits its current scenario which goes beyond mere concerns of risk posed by nuclear power. Germany is a developed nation, a power-surplus nation — so it can afford to lose a few plants. More important, Germany has completely exhausted its nuclear resources. Against a total demand of 3,332 tonnes (2006-08) was able to produce only 68 tonnes (Note: This was the production in 2006) of Uranium, and for the deficit it was relying on imports. Thus, nuclear energy never fits into its goal of energy independence. India, on the other hand, is the leader of the new resource of nuclear fuel called Thorium, which is considered to be the nuclear fuel of the future.

The Indian population is misled when it is said that some Western nations have ended their nuclear programme, or that Japan is reconsidering nuclear power plant expansion. Study the accompanying Table, which shows what share of energy these advanced nations are generating by means of nuclear power.

The study indicates that most of the prosperous nations are extracting about 30-40 per cent of power from nuclear power and it constitutes a significant part of their clean energy portfolio, reducing the burden of combating climate change and the health hazards associated with pollution. Meanwhile in India, we are not generating even 5000 MW of nuclear power from the total of about 150 GW of electricity generation, most of it coming from coal.

We should be careful not to be carried away by the barrage of anti-nuclear news often being generated by many of the same nations that are enjoying the maximum benefits from it. The economically developed world has a well-trained habit of presenting their success in a distorted context to misguide emerging nations like India, which are a potential challenge to their neo-age proxy-imperial economic subjugation. What is needed for our India, we Indians have to decide.

Hence, we and we alone will decide what is the best needed action for our economic prosperity, based on our context and resource profile. India is blessed with the rare, and very important, nuclear fuel of the future – Thorium. We cannot afford to lose the opportunity to emerge as the energy capital of the world, which coupled with the largest youth power, will be our answer to emerge as the leading economy of the world. India has the potential to be the first nation to realise the dream of a fossil fuel-free nation, which will also relieve the nation of about $100 billion annually which we spend in importing petroleum and coal. Besides the billions spent on importing coal or oil, we are also importing millions of tonnes of CO2 and other greenhouse gases, which are a hazard to the environment and human health. It is noteworthy that in 2010-11, India imported about 82 billion tonnes of coal, a large fraction of which was for the thermal power plants. Experts believe that this number will continue to rise exponentially in the times ahead, as shown in Figure 2.

The greenest sources of power are definitely solar and wind. With abundant sunshine and places of high wind velocity, the nation definitely has potential for these forms of energy. But solar and wind power, despite all their advantages, are not stable and are dependent excessively on weather and sunshine conditions. Nuclear power, on the other hand, provides a relatively clean, high-density source of reliable energy with an international presence. Today, there are 29 countries operating 441 nuclear power plants, with a total capacity of about 375 GW(e). The industry now has more than 14,000 reactor-years of experience. Sixty more units, with a total target capacity of 58.6 GW, were under construction. (Note: This is according to data from 2010.)

Much of the destructive power of nuclear accidents is compared against the benchmarks of the atomic bombing of Japan by the U.S. forces during the Second World War. Pictures of mushroom clouds looming over cities, charred buildings, and massive death scenes are awakened to form our opinion of nuclear dangers and disasters. But that is far from the reality. It is poor judgment and a deliberate act of spreading fear to compare a nuclear bomb with a nuclear plant. The bomb is designed to deliver a large amount of energy over a very short period of time, leading to explosions, firestorms and massive heat energy generated to obliterate every object in its path. That is what a bomb is supposed to do!

Civilian nuclear applications in the form of a power plant, on the other hand, are designed to deliver small amounts of energy in a sustainable manner over a far larger time frame. It is designed with systems to control and cool the nuclear reaction. There are safety procedures and back-ups, and even in the event of failures, as in the 2011 disaster, the destructive might will never be even a fraction of what happens in the case of a nuclear bomb.

Nuclear risks

We need to put the Fukushima-Daiichi events in the historic frame of nuclear accidents and analyse them. While there was huge loss to property and disruption of normal life, there was no direct loss of life due to the accident or during the operation in its aftermath to contain it. As a silver lining, the way the accident was handled — compared to the Chernobyl disaster of 1986 — showed how much progress we have achieved in nuclear emergency management over a period of two and half decades. The Fukushima-Daiichi plant was almost five times as big in terms of power generation and, more significantly, contained about nine times the nuclear fuel at the time of the accident. Yet, with better emergency management learnt over the years, the maximum radiation was less than 0.4 per cent of that released during the Chernobyl disaster. So, while the Fukushima-Daiichi accident was unfortunate and needs review, one must also acknowledge the advancement of national and international capabilities to manage nuclear emergencies now.

Another argument which surrounds the nuclear debate is that nuclear accidents and the radiation fallout as the aftermath would not only harm the exposed generation but also continue to impact generations to come. If available facts and scientific inquiry was given more weightage than mere conjectures and comic-bookish imagination, this argument will in all probability be proved a myth. The strongest case of human exposure and destruction due to radiation is, without argument, the Hiroshima and Nagasaki nuclear bombings of 1945. These are the only two occasions when nuclear force was intentionally developed and deployed to kill human life. Post the bombing, the U.S. government established the Atomic Bombing Casualty Commission (ABCC) in 1946 to assess the late-effects of radiation among the atomic bomb survivors of Hiroshima and Nagasaki. It operated for 30 years until, in 1974, it was reconstituted as a joint venture between the U.S. and Japan under the name of Radiation Effects Research Foundation (RERF). It is operational even today. The ABCC and the RERF have extensively studied the long-term impact of radiation and nuclear disaster across generations for over six decades now, and the findings throw light on the possible effects of radiation. Its report says that chronic (sustained) exposure of about 100 millisieverts (mSv, which is the international unit to measure radiation), increases cancer risk by 0.5 per cent to 0.7 per cent. Notably, the areas in close proximity of Fukushima had a peak exposure of 800 mSv.

Of course, there is some correlation between radiation exposure and cancer risk, which must be acknowledged. But the notable aspect is that, contrary to popular belief, the findings clearly state that the effect of such exposure is limited only to the exposed generation. To quote the report, “Our studies have not found thus far any inherited genetic effects from parental radiation exposure among the children of A-bomb survivors.” (Note: A-bomb stands for the atom bomb. Two atomic bombs were dropped by the U.S. on the Japanese cities of Hiroshima and Nagasaki on August 6 and 9, 1945, as part of the Second World War.) Thus, while radiation due to a nuclear disaster is dangerous, it would amount to wrong propaganda to state that nuclear disasters will affect generations to come. Of course, the technology has been advancing over the decades and the human capability to contain nuclear disasters has definitely advanced.

There is no doubt that nuclear power is superior along three dimensions, namely, energy density, effect on improved quality of living, and the economic benefits. Now let us look at the key challenges which pertain to the sector, especially in the wake of the recent natural disaster impacting the Daiichi plant in Fukushima. Two concerns are prominent here. The first is that of safety against the plant's disaster, and the second relates to the environmental impact and the nuclear waste which the plant generates.

Let us consider the second issue first.

Opportunity cost of nuclear energy

a) Abstinence from nuclear power is an incomplete response without the logical alternative. If we look at the complete picture of alternative measures, we will have to endorse the fact that our current and future energy demands have to be met. In economics, there is a concept called “opportunity cost,” which refers to the cost incurred when one chooses the next alternative. So what happens if we pronounce a total ban on nuclear energy generation? Some part of the future need, although only a small fraction, would come from solar and wind sources, with great unpredictability as pointed out earlier. A part would be offset by hydro-power too. But in all probability we will continue to increase our reliance on fossil-based fuel power generation methods, at least in the near and mid-term future. And that is where the problem lies.

Every year, human activities are adding about 30 billion tonnes of CO2 into the atmosphere. The IPCC estimates that 26 per cent of this emission (about 7.6 billion tonnes) is a direct consequence of electricity generation requirements. This is not really air pollution but it adds to the risk of climate change, which is exhibited in changing rainfall patterns, sea levels and temperatures, leading to food shortages, malnutrition, and disease alterations. The WHO estimates that about 1.3 million people lose their lives as a result of urban outdoor air pollution alone, and about 140,000 are causalities to adaptation challenges of climate change. (Note: Additionally, about two million lives are lost due to indoor pollution, the primary victims being women, and children under the age of five.) Thus, the pollution caused by power generation activities, and the climate change associated with them, are directly or indirectly responsible for about 481,000 deaths every year. Comparatively, in the case of the worst civilian nuclear disaster ever at Chernobyl, the United Nations Scientific Committee on the Effects of Atomic radiation (UNSCEAR) predicted up to 4,000 cancer cases (often curable) due to the accident, besides 57 direct causalities. Unclean fossil energy is definitely not sustainable in the future. Moreover, fossil-based fuels are fast depleting, and their scarcity is inspiring geopolitical instabilities around the world.

... Our gateway to a prosperous future

Coalfields and burning earth

Pollution, outdoor and indoor

Endnotes