Graphene, which is the thinnest material known to science, is not only transparent to eye but also to water, a new study including Indian origin researcher has revealed.

Engineering researchers at Rensselaer Polytechnic Institute and Rice University coated pieces of gold, copper, and silicon with a single layer of graphene, and then placed a drop of water on the coated surfaces. Surprisingly, the layer of graphene proved to have virtually no impact on the manner in which water spreads on the surfaces.

The findings could help inform a new generation of grapheme-based flexible electronic devices. Additionally, the research suggests a new type of heat pipe that uses graphene-coated copper to cool computer chips.

The discovery stemmed from a cross-university collaboration led by Rensselaer Professor Nikhil Koratkar and Rice Professor Pulickel Ajayan.

"We coated several different surfaces with graphene, and then put a drop of water on them to see what would happen. What we saw was a big surprise-nothing changed. The graphene was completely transparent to the water,” said Koratkar, a faculty member in the Department of Mechanical, Aerospace, and Nuclear Engineering and the Department of Materials Science and Engineering at Rensselaer. "The single layer of graphene was so thin that it did not significantly disrupt the non-bonding van der Waals forces that control the interaction of water with the solid surface. It’s an exciting discovery, and is another example of the unique and extraordinary characteristics of graphene.” These results surprised the researchers. Graphene is impermeable, as the tiny spaces between its linked carbon atoms are too small for water, or a single proton, or anything else to fit through. Because of this, one would expect that water would not act as if it were on gold, silicon, or copper, since the graphene coating prevents the water from directly contacting these surfaces. But the research findings clearly show how the water is able to sense the presence of the underlying surface, and spreads on those surfaces as if the graphene were not present at all.

As the researchers increased the number of layers of graphene, however, it became less transparent to the water and the contact angles jumped significantly. After adding six layers of graphene, the water no longer saw the gold, copper, or silicon and instead behaved as if it was sitting on graphite.

The study has been published in the journal Nature Materials.

More In: Science | Sci-Tech