Two more orbit-raising manoeuvres will put the satellite in its final orbit

The GSAT-14 communication satellite, put into orbit on Sunday by the Geo-synchronous Satellite Launch Vehicle (GSLV-D5), is in good health, and its systems are normal, satellite specialists of the Indian Space Research Organisation said on Monday.

The ISRO successfully executed the satellite’s first orbit-raising manoeuvre on Monday morning, giving commands to the satellite’s propulsion system called the Liquid Apogee Motor (LAM). Two more orbit-raising manoeuvres will put the satellite in its final, circular geo-stationary orbit, at a height of 36,000 km around the earth.

The GSLV-D5, which used an indigenous cryogenic engine, injected the GSAT-14 into a perfect geo-synchronous transfer orbit with a perigee of 179 km and an apogee of 35,944 km. Soon after, the ISRO’s Master Control Facility at Hassan, took over the control and commanding of the satellite.

After the satellite went into the orbit, its solar panels spread out like an accordion. “On Sunday, immediately after the GSAT-14 went into the orbit, we activated the solar panels, pointing them to the sun. The satellite is getting its energy from the solar panel,” said M. Nageswara Rao, Project Director, GSAT-14.

On Monday, the ground controllers at Hassan gave commands to the LAM to fire to raise the satellite’s elliptical orbit and gradually make it circular. The LAM went into action, taking the satellite to an orbit with a perigee of 8,966 km. LAM used 435 kg of fuel (mono methyl hydrazine) in this firing. The 1,982-kg satellite carries 1,137 kg of fuel.

“Today’s burn lasted 53 minutes. We will fire the LAM on January 6 and on January 9. Then the satellite will start drifting towards its final orbit,” Mr. Nageswara Rao said.

Sensors switched on

All the systems of the satellite were working well. Sensors had been switched on.

The GSLV-D5 launch, using the indigenous cryogenic engine, had come under the spotlight because four out of seven earlier launches failed. Of these four, three had used the Russian engine.

The GSLV-D3 flight on April 15, 2010, in which the ISRO used its own engine for the first time, also failed. When the ISRO made the second attempt on August 19, 2013 with its own cryogenic stage in the GSLV-D5, the launch had to be cancelled 75 minutes before the lift-off because liquid fuel leaked from the second stage of the three- stage vehicle.